Novel Reaction of Carbon Suboxide. Synthesis of 6-Amino-4-hydroxy-2(1*H*)-pyridone Derivatives Leonardo Bonsignore*, Maria Teresa Cocco, Giuseppe Loy and Valentina Onnis Dipartimento Farmaco Chimico Tecnologico, Università, Via Ospedale 72, I-09124 Cagliari, Italy Received September 10, 1991 The reaction of 2-cyanoacetamidines 1 with carbon suboxide 2 afforded 6-amino-4-hydroxy-2(1H)-pyridones 4. Compounds 4 were also obtained by reaction of amidines 1 and 2,4,6-trichlorophenylmalonates 3. # J. Heterocyclic Chem., 29, 237 (1992). Several research groups have long shown an interest in malonylheterocycles such as 4-hydroxy-2-pyrones and -2pyridones, and 6-hydroxypyrimid-4-ones for their biological properties. Among the different synthetic methods available, one of the most versatile in the preparation of these compounds provides for the use of an appropriate 1,3-binucleophile with a malonic acid derivative [1]. The preparation of 4-hydroxy-2(1H)-pyridones is also known by the reaction of enamines and azomethines with malonic acid derivatives [2]. Pursuing studies on the reactivities of carbon suboxide and other malonic acid derivatives [3], in the present work we describe the reactions of 2-cyanoacetamidines, extremely versatile synthons in the formation of heterocyclic la, x = pyrrolidino lb, x = morpholino le, x = 4-methylpiperazino 1d, x = 4-phenylpiperazino le, x = 4-ethoxycarbonylpiperazino **3a**, Ar - $C_6H_2Cl_3$, Y = H **3a**, Ar - $C_6H_2Cl_3$, Y = C_2H_5 Table 1 Physical and Analytical Data of Compounds 4 | Compound
No. | X | Y | Method | Yield
(%) | Mp
(°C) | Formula | Analysis %
Calcd./Found | | | |-----------------|---------------------------------|----------|--------|--------------|------------|--|----------------------------|--------------|------------------| | | | | | | | | C | H | N | | 4 a | pyrrolidino | Н | A
B | 40
83 | 310 [a] | $\mathrm{C_{10}H_{11}N_{3}O_{2}}$ | 58.53
58.50 | 5.40
5.38 | 20.48
20.45 | | 4b | morpholino | Н | A
B | 40
47 | 266 [b] | $C_{10}H_{11}N_3O_3$ | 54.23
54.25 | 5.01
5.03 | 19.00
19.03 | | 4 c | 4-methylpiperazino | H | A
B | 53
85 | 210 [b] | $C_{11}H_{14}N_4O_2$ | 56.40
56.45 | 6.02
6.00 | 23.92
23.89 | | 4d | 4-phenylpiperazino | H | A
B | 40
84 | 255 [a] | $C_{16}H_{16}N_4O_2$ | 64.85
64.80 | 5.44
5.42 | 18.91
18.93 | | 4e | 4-ethoxycarbonyl-
piperazino | H | A
B | 30
65 | 258 [c] | $\mathrm{C_{13}H_{16}N_4O_4}$ | 53.42
53.39 | 5.52
5.50 | 19.17
19.14 | | 41 | pyrrolidino | C_2H_5 | В | 75 | 259 [a] | $C_{12}H_{15}N_3O_2$ | 61.78
61.75 | 6.48
6.46 | 18.02
18.04 | | 4g | morpholino | C_2H_5 | В | 46 | 265 [b] | $\mathrm{C}_{12}\mathrm{H}_{15}\mathrm{N}_3\mathrm{O}_3$ | 57.82
57.79 | 6.07
6.05 | 16.86
16.84 | | 4 h | 4-methylpiperazino | C_2H_5 | В | 60 | 265 [b] | $\mathrm{C_{13}H_{18}N_4O_2}$ | 59.52
59.50 | 6.92
6.90 | $21.36 \\ 21.34$ | | 4i | 4-phenylpiperazino | C_2H_5 | В | 60 | 267 [a] | $\mathrm{C_{18}N_{20}N_{4}O_{2}}$ | 66.65
66.60 | 6.22
6.20 | 17.27
17.25 | | 4 j | 4-ethoxycarbonyl-
piperazino | C_2H_5 | В | 42 | 255 [c] | $\mathrm{C_{15}H_{20}N_{4}O_{4}}$ | 56.24
56.30 | 6.29
6.27 | 17.49
17.52 | Table 2 Spectroscopic Data of Compounds 4 | Compound
No. | IR (nujol)
v cm ⁻¹ | ¹ H NMR
δ (ppm) | |-----------------|---------------------------------------|---| | 4a | 3250, 2190, 1635,
1610, 1585 | (DMSO-d ₆): 1.80 (m, 4H, 2CH ₂), 3.31 (s, 2H, CH ₂), 3.54 (m 4H, CH ₂ NCH ₂), 5.20 (s, 1H, OH), 7.48 (s, 1H, H-3), 11.20 (br s, 1H, NH) | | 4b | 3140, 2220, 1640,
1610, 1580 | (DMSO-d ₆): 3.34 (m 4H, CH ₂ NCH ₂), 3.61 (s, 2H, CH ₂), 3.63 (m 4H, CH ₂ OCH ₂), 11.50 (br s, 1H, NH) | | 4c | 3400, 2220, 1640,
1580 | (DMSO-d ₆): 2.35 (s, 3H, CH ₃), 2.70, 3.53 (m, 8H piperazinyl), 3.41 (s, 2H, CH ₂), 10.55 (br s, 1H, NH) | | 4d | 3400, 2200, 1640,
1600, 1580 | (Pyridine-d ₅): 3.21, 3.87 (m, 8H piperazinyl), 3.77 (s, 2H, CH ₂), 5.33 (br s, 2H, OH and NH), 6.85 (m, 3H, Ar), 7.20 (m, 2H, Ar) | | 4e | 3490, 2220, 1700,
1650, 1590 | $(DMSO-d_6)$: 1.18 (t, 3H, CH ₃), 3.40, 3.58 (m, 8H piperazinyl), 3.60 (s, 2H, CH ₂), 4.00 (q, 2H, CH ₂), 11.20 (br s, 1H, NH) | | 4f | 3240, 3140, 2210,
1640, 1590 | (DMSO-d ₆): 0.85 (t, 3H, CH ₃), 1.82 (m, 4H, 2CH ₂), 2.29 (q, 2H, CH ₂), 3.52 (m 4H, CH ₂ NCH ₂), 7.40 (br s, 2H, OH and NH) | | 4g | 3240, 2220, 1650,
1620 | (DMSO-d ₆): 0.88 (t, 3H, CH ₃), 2.34 (q, 2H, CH ₂), 3.38 (m 4H, CH ₂ NCH ₂), 3.61 (m 4H, CH ₂ OCH ₂), 10.40 (br s, 2H, OH and NH) | | 4h | 3350, 2220, 1630,
1580 | (Pyridine- d_5): 1.20 (t, 3H, CH ₃), 2.02 (s, 3H, CH ₃), 2.86 (q, 2H, CH ₂), 2.32, 3.56 (m, 8H piperazinyl), 5.36 (br s, 2H, OH and NH) | | 4i | 3260, 2200, 1620,
1580 | (Pyridine-d ₅): 1.22 (t, 3H, CH ₃), 2.87 (q, 2H, CH ₂), 3.13 and 3.65 (m, 8H piperazinyl), 5.25 (br s, 2H, OH and NH), 6.85 (m, 3H, Ar), 7.20 (m, 2H, Ar) | | 4j | 3200, 2200, 1665,
1630, 1600, 1580 | (Pyridine- d_5): 1.03 (t, 3H, CH ₃), 1.20 (t, 3H, CH ₃), 2.86 (q, 2H, CH ₂), 3.47 (m, 8H piperazinyl), 4.05 (q, 2H, CH ₂), 5.60 (br s, 2H, OH and NH) | systems [4]. First the reactions between amidines 1 and carbon suboxide 2, were carried out, which gave discrete yields of 6amino-4-hydroxy-2(1H)-pyridone derivatives 4a-e. The structure of the derivatives 4 was assigned on the basis of the analytical and spectroscopic data reported in Tables 1 and 2. Particularly, 'H nmr (DMSO-d₆) showed a singlet between 3.61 and 3.31 ppm related to the protons in C-3 and a broad signal between 11.50 and 10.55 ppm, which collapses after deuteration, due to the NH group. In most 4 derivatives, a further broad exchangeable singlet between 5.20 and 5.50 due to the OH group could be seen, which shows existence of a tautomeric equilibrium in solution, as had been seen in similar molecules synthesized by us [5]. At the same time, we reacted amidines 1 with the diethyl malonic acid without obtaining any result. Subsequently using the bis-2,4,6-trichlorophenylmalonates **3a-b** as reagents, 4-hydroxy-2(1*H*)-pyridone derivatives were obtained in good yields. As expected, in solution C-3 substituted pyridones are to be found prevalently in the form of 4-hydroxy-2(1*H*)-pyridone, as can be seen from the ¹H nmr spectra which clearly show the ethyl resonances at 0.85 ppm (triplet integrating for 3H with J = 7) and 2.30 ppm (quartet, 2H) as well as broad bands for the NH and OH groups. Carbon suboxide and active malonic esters proved useful in obtaining the 6-amino-4-hydroxy-2(1H)-pyridone derivatives in one step. #### **EXPERIMENTAL** The melting points were determined on Köfler hot stage and are uncorrected. The ir spectra were obtained in nujol with a Perkin-Elmer 398 spectrophotometer. The 'H nmr spectra were recorded on a Varian Unity 300 spectrometer with shifts given in ppm downfield from internal hexamethyldisiloxane. The elemental analyses (C, H, N) were carried out with a Carlo Erba model 1106 Elemental Analyzer. The amidines 1 were obtained with a previously described procedure [4a]. 6-Amino-4-hydroxy-2(1H)-pyridone Derivatives 4. General Procedure. #### Method A. Carbon suboxide (16 mmoles) was added during one hour at -70° to a stirred solution of amidine 1 (16 mmoles) in dry dichloromethane. When the addition was completed, the mixture was stirred at 0° for 5 hours, and then kept at room temperature with stirring for 48 hours. The precipitate was filtered and crystallized from a suitable solvent to give pyridones 4. # Method B. A mixture of amidine 1 (10 mmoles) and bis-2,4,6-trichlophenylmalonate 3 (10 mmoles) was heated to 150-160° for 5 hours. After cooling, the residue was treated with ethyl acetate and the resulting precipitate was filtered, washed with ethyl acetate and recrystallized. ### Acknowledgements. This work was supported by a grant from the Ministero della Pubblica Istruzione. # REFERENCES AND NOTES [1a] Th. Kappe and E. Ziegler, Angew. Chem., Int. Ed. Engl., 13, 491 (1974); [b] Th. Kappe and A. Böttcher, Heterocycles, 19, 1083 (1982). [2a] V. Prelog and S. Szpilfogel, Helv. Chim. Acta, 28, 1648 (1945); [b] E. Schrötter, M. Niedrich, and M. Schick, Pharmazie, 39, 155 (1984); [c] Th. Kappe, S. Ajili, and W. Stadlbauer, J. Heterocyclic Chem., 25, 463 (1988). [3a] L. Bonsignore, G. Loy, and D. Secci, Heterocycles, 27, 1377 (1988); [b] L. Bonsignore, S. Cabiddu, G. Gelli, G. Loy, and M. Secci, J. Chem. Soc., Perkin Trans. II, 1247 (1988). [4a] M. T. Cocco, C. Congiu, A. Maccioni, A. Plumitallo, M. L. Schivo, and G. Palmieri, Farmaco Ed. Sci., 43, 103 (1988); [b] M. T. Cocco, C. Congiu, A. Maccioni, and A. Plumitallo, J. Heterocyclic Chem., 26, 1859 (1989); [c] M. T. Cocco, C. Congiu, A. Maccioni, and V. Onnis, Synthesis, 529 (1991). [5] L. Bonsignore, S. Cabiddu, G. Loy, and M. Secci, J. Heterocyclic Chem., 19, 1241 (1982).